…(Зж:1з) на (Зг:1м), получаем 9жг : 3жм : 3зг : 1зм, что точно соответствует данным решетки Пеннета.

Рис. V.4. Схема дигибридного скрещивания.

Гибриды первого поколения единообразны как по фенотипу, так и по генотипу. Они образуют гаметы четырех различных типов — АВ, Ab, aB, ab

Таблица V.2

Расщепление по фенотипу и генотипу в F2 при дигибридном скрещивании:

 

Таблица V.3

Соотношение фенотипических и генотипических классов во втором поколении при моно-, ди-, три- и полигибридном скрещивании:

Зная, что при моногибридном скрещивании расщепление по генотипу соответствует 1АА: 2Аа: 1аа для одной пары и 1BB: 2Bb: 1bb для другой, можно подсчитать частоты, или вероятности, генотипов различных классов. Вероятности генотипов соответствуют: АА – ј, Аа – Ѕ, аа - ј, ВВ – ј, Вb – Ѕ, bb – ј. Например, относительная частота генотипа ААВВ рассчитывается путем перемножения вероятностей јАА х јBB = 1/16AABB, для ААВЬ — јAA х ЅВb = 1/8 или 2/16, ААВЬ. Тем же путем получаем распределение всех остальных различающихся по генетической конституции классов особей в отношении 1 : 2 : 2 : 4 : 1 : 2 : 1 : 2 : 1, что также полностью соответствует данным решетки Пеннета.

Поступая аналогичным образом, можно представить результаты расщепления по фенотипу и генотипу для тригибридного скрещивания, когда родительские формы различаются по трем независимым признакам и в F, образуются тригибриды. Эксперименты показывают, что при тригибридном скрещивании расщепление в F по фенотипу дает 8 различных классов особей в соотношении 27:9:9:9:3:3:3:1, а расщепление по генотипу дает 27 различных классов.

Подобным образом возможен расчет вероятностей фенотипических и генотипических классов для любого полигибридного скрещивания (табл. V.3).

В общем виде эти соотношения можно выразить простыми формулами: число фенотипических классов равно 2, где «2» отражает парность аллелей, а показатель степени «n» — число независимых генов. Число генотипических классов равно З, где основание степени «3» — число генотипических классов при моногибридном скрещивании, а показатель степени «n» — число генов.

Очевидно, что в основе приведенных формул лежат закономерности моногибридного скрещивания. Они справедливы для любого числа генов, но не превышающих гаплоидное число n.

Важно отметить, что закономерности, открытые Менделем, реализуются при анализе большого количества особей, поскольку малое количество в потомстве гибридов (например, дети одной семьи) может давать отклонения от точного соотношения ожидаемых классов расщепления в силу случайных событий.

Гибридологический анализ, разработанный Менделем, и результаты, полученные на его основе, заложили концепцию фундаментального понятия генетики и биологии в целом — понятие гена. В последние десятилетия XIXв. были обнаружены хромосомы, описаны митотическое и мейотическое деления клетки. Тем не менее не были известны материальные носители наследственной информации. Только после того как законы Менделя были открыты вновь в 1900г., сопоставление менделевского расщепления признаков и распределения хромосом в мейозе позволило сделать окончательный вывод о том, что именно хромосомы являются носителями генетической информации. Этими событиями ознаменовалось начало нового научного периода развития генетики, а наблюдения и выводы Менделя и в настоящее время составляют важнейшую главу учения о наследственности и изменчивости.

Взаимодействие генов

Описано несколько типов взаимодействия неаллельных генов: комплементарность, эпистаз и полимерия.

Комплементарность — взаимодействие неаллельных генов, которые обусловливают развитие нового признака, отсутствующего у родителей. Примером комплементарного действия у человека могут служить случаи, когда у глухих родителей рождаются дети с нормальным слухом.

Развитие нормального слуха находится под генетическим контролем десятков различных неаллельных генов, гомозиготное рецессивное состояние одного из которых может приводить к одной из форм наследственной глухоты. Таких форм у человека известно более 30. Если один из родителей является гомозиготой по рецессивному гену аа (рис. V.5), а другой — гомозиготой по другому рецессивному гену bb, то все их дети будут двойными гетерозиготами и, следовательно, слышащими, поскольку доминантные аллели будут взаимно дополнять друг друга (см. рис. V.5). Таким образом формируется новый по отношению к родителям признак — нормальный слух.

Эпистаз (от греч. epi — над + stasis — препятствие) — взаимодействие неаллельных генов, при котором наблюдается подавление проявления одного гена действием другого, неаллельного гена. Подавляющий ген называется геном-супрессором, а подавляемый — гипостатическим геном. По-видимому, действие гена-супрессора на подавляемый ген сходно с принципом доминантность — рецессивность. Но существенное различие заключается в том, что эти гены не являются аллельными, т.е. расположены в негомологичных хромосомах или занимают различные локусы в гомоло-

Рис. V.5. Схема, поясняющая возможность рождения детей с нормальным слухом у глухих родителей с различными генетическими формами глухоты.

гичных. Различают доминантный и рецессивный эпистаз. При доминантном эпистазе доминантный аллель гена-супрессора подавляет проявление доминантного аллеля другого гипостатического гена. При рецессивном эпистазе, или криптомерии, рецессивный аллель гена-супрессора, будучи в гомозиготном состоянии, не дает проявиться доминантной или рецессивным аллелям других генов.

Примером рецессивного эпистаза у человека может служить так называемый бомбейский фенотип, когда индивид, имеющий доминантный аллель группы крови системы АВ0 (например, аллель В, определяющий принадлежность человека к III или IV группе), идентифицируется в реакции агглютинации как человек с 0(I). Это состояние возникает в результате того, что данный индивид является рецессивной гомозиготой (hh) по другой, нежели система АВ0, генетической системе Hh. Для реализации аллелей I и I необходимо присутствие хотя бы одного доминантного аллеля Н.

Полимерия (от греч. polys — много + meros — часть) — вид взаимодействия, когда эффекты нескольких неаллельных генов, определяющих один и тот же признак, примерно одинаковы. Подобные признаки получили название количественных, или полимерных признаков. Как правило, степень проявления полимерных признаков зависит от числа доминантных генов. Наследование полимерных признаков было впервые описано шведским генетиком Г. Нильсон-Эле в 1908 г. Проводя скрещивание различных форм пшеницы (с красными и белыми зернами), он наблюдал расщепление в F признака окраски в отношении: 15/16 окрашенных и 1/16 белых. Среди окрашенных зерен он наблюдал все переходы — от интенсивно окрашенных до слабо окрашенных.

Анализ особенностей расщепления показал, что в данном случае окраску зерен определяют два доминантных аллеля двух различных генов, а сочетания их рецессивных аллелей определяют отсутствие окраски. Поскольку полимерные гены имеют однонаправленное действие, их, как правило, обозначают одинаковыми буквами. Таким образом, исходные родительские формы имели генотипы AAAA и aaaa. Наличие всех четырех доминантных аллелей определяло самую интенсивную окраску, трех доминантных аллелей (типа AAAa) — менее интенсивную окраску и т.д.

Примером полимерного наследования у человека является наследование окраски кожных покровов. В браке индивида негроидной расы (коренного жителя Африки) с черной окраской кожи и представителем европеоидной расы с белой кожей дети рождаются с промежуточным цветом кожи (мулаты). В браке двух мулатов потомки могут обладать любой окраской кожи: от черной до белой, поскольку пигментация кожи обусловлена действием трех или четырех неаллельных генов. Влияние каждого из этих генов на окраску кожи примерно одинаково.

Полимерное наследование характерно для так называемых количественных признаков, таких, как рост, вес, окраска кожных покровов, скорость протекания биохимических реакций, артериальное давление, содержание сахара в крови, особенности нервной системы, уровень интеллекта, и многих других, которые нельзя разложить на четкие фенотипические классы. Чем большее число неаллельных генов контролируют развитие количественного признака, тем менее заметны переходы между фенотипическими классами.

Неменделевская генетика.

Гениальность законов Менделя заключается в их простоте. Строгая и элегантная модель, построенная на основе этих законов, служила генетикам точкой отчета на протяжении многих лет. Однако в ходе дальнейших исследований выяснилось, что законам Менделя подчиняются только относительно немногие генетически контролируемые признаки. Оказалось, что у человека большинство и нормальных, и патологических признаков детерминируются иными генетическими механизмами, которые стали обозначать термином «неменделевская генетика». Таких механизмов существует множество: хромосомные аберрации (синдром Дауна); наследование, сцепленное с полом (цветовая слепота); импринтинг (синдромы Прадера—Вилли, Энгельмана); появление новых мутаций (развитие раковых заболеваний); экспансия (инсерция) повторяющихся нуклеотидных последовательностей (миотоническая дистрофия); наследование количественных признаков (сложные поведенческие характеристики).

Хромосомные аберрации: синдром Дауна

Синдром Дауна (СД) - одно из весьма ограниченного числа наследуемых заболеваний, фенотип которого хорошо известен даже неспециалистам. Его «известность» является результатом того, что, во-первых, частота встречаемости СД достаточно высока и, во-вторых, фенотип этого заболевания легко узнаваем: больным СД свойственны характерные внешние черты, выражение лица и умственная отсталость.

Первые клинические и научные описания СД появились в середине прошлого века, а его точное определение было дано в 1866 г. Дж. Дауном, описавшим несколько таких пациентов. Гипотезы о том, что СД контролируется генетически, были сформулированы в начале XX в. К 30-м годам было высказано предположение, что это заболевание развивается в результате аберрации хромосом (структурных отклонений в хромосомном наборе), причиной которой служит их нерасхождение в процессе мейоза. В 1959 г. было обнаружено, что СД вызывается трисомией хромосомы 21, т.е. наличием в клетках трех, а не двух, как обычно, хромосом. Сегодня известно, что примерно 1 из 600 новорожденных является носителем этой аномалии. Кроме того, по современным оценкам, примерно 1 из 150 оплодотворенных яйцеклеток человека является носительницей трисомии 21 (большинство яйцеклеток с трисомиями гибнет). Пациенты с СД составляют около 25% всех умственно отсталых, формируя самую большую этиологически однородную группу умственно отсталых.

Генетический механизм СД представляет собой иллюстрацию явления хромосомных аберраций. Во время формирования половых клеток — гамет — все 23 пары хромосом делятся, и каждая гамета становится носителем одной хромосомы из каждой пары. Когда спермий оплодотворяет яйцеклетку, хромосомные пары восстанавливаются, причем в каждой паре одна хромосома приходит от матери, вторая — от отца. Несмотря на отлаженность процесса образования гамет, в нем случаются ошибки, и тогда разделение хромосомных пар нарушается — появляется гамета, которая содержит не одну хромосому, а их пару. Это нарушение называется нерасхождением хромосом. Когда такая гамета при оплодотворении сливается с нормальной гаметой, образуется клетка с тремя одинаковыми хромосомами; подобное явление и называется трисомией (см. рис. 1.7). Нерасхождение хромосом служит главной причиной спонтанных абортов в течение первых нескольких недель жизни плода. Тем не менее существует некоторая вероятность того, что зародыш с аномальным хромосомным набором продолжит развитие.

Точная причина нерасхождения неизвестна. Надежным коррелятом трисомии-21 является возраст матери: согласно исследованиям, у 56% матерей старше 35 лет плоды оказываются носителями трисомии-21, и в таких случаях примерно 90% диагностированных женщин предпочитают искусственно прервать беременность. Поскольку СД появляется «заново» в каждом поколении (нерасхождение — единичное событие, вероятность появления которого увеличивается с возрастом матери), постольку СД нельзя рассматривать как заболевание, передающееся по наследству.

Наследование, сцепленное с полом (х-хромосомой): цветовая слепота.

Рис. 3.1. Родословные пробандов, страдающих цветовой слепотой (признак наследуется по поло-сцепленному механизму).

В случае а основателем родословной, в которой цветовая слепота передается по наследству, является мать; в случае б — отец. Обозначения те же, что и на рис. 2.1.

Наиболее часто встречающийся пример цветовой слепоты — неразличение красного и зеленого цветов (синдром, развивающийся в результате недостатка соответствующего цвето-поглощающего пигмента в сетчатке глаза). Цветовая слепота встречается чаще у мужчин, чем у женщин. При изучении наследования цветовой слепоты были описаны два типа родословных: а) мать страдает цветовой слепотой, отец — нет, и все их сыновья (но ни одна из дочерей!) также имеют это заболевание (рис. 3.1а), б) отец страдает цветовой слепотой, мать и все дети имеют нормальное цветовое зрение, но один из внуков также цвето-слепой.

Феномен, объясняющий тип наследования цветовой слепоты, называется наследованием, сцепленным с полом, — гены, ответственные за данную аномалию, локализованы в половых хромосомах. Поскольку особи разного пола несут разные половые хромосомы (XX у женщин и XY у мужчин), это приводит к определенным отклонениям от менделевских закономерностей наследования.

Цветовая слепота вызывается рецессивным аллелем с на X-хромосоме. В результате того, что мужчины получают свою единственную X-хромосому от матери, даже одного аллеля, вызывающего цветослепоту, достаточно, чтобы у мужчины, унаследовавшего аллель с на Af-хромосоме матери, развилось это заболевание. Для женщин же одной копии аллеля с недостаточно, они должны унаследовать две X-хромосомы, несущие гены цветовой слепоты. Именно этим объясняется то, что у мужчин цветовая слепота встречается чаще, чем у женщин.

У человека существует пара хромосом, которая различается у мужчин и женщин. Женщины имеют две X-хромосомы, а мужчины несут одну Х- и одну У-хромосому. У-хромосома значительно меньше по размеру, чем любая другая хромосома в геноме человека, и содержит «мужские гены», а также относительно небольшое количество генов, отвечающих за другие признаки. Сын и дочь наследуют одну хромосому X от матери; от отца дочери наследуют вторую X-хромосому, а сыновья — Y-хромосому. Сыновья не могут унаследовать отцовскую X-хромосому (если в зародыше сольются две X-хромосомы — одна от матери, другая от отца, то это слияние и определит пол ребенка, т.е. разовьется женская особь). Дочери наследуют одну X-хромосому от своих отцов, но для проявления рецессивных признаков они должны получить идентичную копию рецессивного аллеля от своих матерей.

Механизмы наследования цветовой слепоты показаны на рис. 3.2. Если семья состоит из цвето-слепой матери и нормального отца (рис. 3.2а), то это означает, что мать несет два аллеля с (по одному на каждой из X-хромосом), а на X-хромосоме отца располагается нормальный аллель С. Поэтому каждый из сыновей неизбежно унаследует одну из X-хромосом матери, несущую с-аллель, и, соответственно, будет страдать цветовой слепотой. Все дочери тоже унаследуют одну из X-хромосом матери, несущую аллель с, однако в результате того, что они получают X-хромосому отца с нормальным аллелем С, фенотипически они будут нормальны, но будут носителями рецессивного признака (для обозначения фенотипически нормального носителя патологического аллеля символ этого индивидуума штрихуется наполовину). В случае, когда семья состоит из цвето-слепого отца и здоровой матери, не являющейся носителем рецессивного аллеля, фенотипически все дети здоровы (рис. 3.2б, первое поколение), но все дочери окажутся носителями аллеля цветовой слепоты, поскольку унаследовали отцовскую X-хромосому, содержащую аллель с. Если же одна из дочерей образует семью с мужчиной, нормально различающим цвета, то половина ее сыновей (но ни одна из дочерей!) будут страдать цветовой слепотой (рис. 3.26, второе поколение). Половина дочерей такой женщины будет нести аллель c, который может проявиться в следующем поколении.

Рис. 3.2. Схема скрещивания: механизм наследования цветовой слепоты.

Импринтинг: синдромы Прадера-Вилли и Энгельмана.

Клиническая картина синдрома Прадера—Вилли (СПВ) включает широкий спектр поведенческих (например, переедание, несдержанный темперамент, подавленное состояние, депрессия) и физических (ожирение, низкий рост) признаков. Среди симптомов синдрома Энгельмана (СЭ) называются умственная отсталость, неуклюжая походка и частый неадекватный смех. Примечательно, что в развитие этих двух фенотипически разных заболеваний вовлечен один и тот же участок хромосомы 15; разница состоит в том, от кого эта хромосома наследуется — от отца или от матери. Такой генетический механизм называется эффектом запечатления (гаметного/генного запечатления или импринтинга) — зависимостью проявления (экспрессии) гена от того, от кого (отца или матери) наследуется данный ген.

Механизм, по которому метится (запечатлевается) один из аллелей, неизвестен. Если мутантная хромосома 15 наследуется от отца, то ребенок страдает СПВ; если от матери, то у ребенка развивается СЭ.

Появление новых мутаций: раковые заболевания

Рак груди представляет собой одно из самых часто встречающихся онкологических заболеваний среди женщин, совокупный риск которого, по современным оценкам, составит к возрасту 85 лет для девочек, родившихся в 1990 г., около 12,6% (иначе говоря, заболеть может 1 из 8 девочек). Предположение о существовании гена (генов), ответственного за наследственную предрасположенность к раку груди, впервые было высказано более 100 лет назад. Когда оно было подтверждено, то оказалось, что примерно 5—10% всех случаев рака груди контролируются мутациями определенных генов (к настоящему моменту были картированы два таких гена — по одному на хромосомах 17 и 13).

Мутации, т.е. изменения наследственного аппарата клетки, затрагивающие целые хромосомы или их части* — наиболее часто встречающиеся примеры механизмов неменделевской генетики. Рассмотрим кратко одну из классификаций мутаций, разделяющую два их типа: гаметные (генеративные) и соматические. Первые изменяют гены, находящиеся в половых клетках; вторые — в клетках тела.

Гаметные мутации не влияют на фенотип родителей, поскольку они происходят во время формирования гаметы, т.е. когда фенотип родителя уже сформировался. Но с момента возникновения новой мутации она передается из поколения в поколение по законам Менделя. В результате таких мутаций, возникающих в поколении F (поколение родителей), фенотипически не проявляющих признаков болезни, а затем передающихся из поколения F1 в последующие поколения (F2, F3), ...F , по законам Менделя, развиваются многие наследственные заболевания. Если мутация не детальна и не ведет к серьезному повреждению репродуктивной способности, процесс передачи мутировавшего гена из поколения в поколение приводит к появлению родословных со многими носителями мутации, начавшейся только в одном аллеле (на одной из хромосом представителя поколения F). Так, одна из мутаций гена на хромосоме 17, приводящая к развитию раковых заболеваний, вызывает примерно 57% всех наследуемых случаев рака груди. Механизм возникновения вредоносных мутаций неизвестен. Предполагается, что в большинстве случаев это спонтанные мутации. Не установлено также, происходят они в одном аллеле (у одного индивидуума) и затем распространяются в популяции или одинаковые мутации происходят у нескольких индивидуумов.

Соматическими мутациями называются мутации в клетках, не связанных с формированием гамет. Они воздействуют только на самого носителя мутации (определяют его фенотип). Наиболее широко известные соматические мутации связаны с развитием рака. Соматические мутации приводят к исчезновению исходных аллелей и замене их аллелями-мутантами. Если клетка с таким аллелем-мутантом начинает делиться, то во всех ее дочерних клетках появляются аллели-мутанты. Вот почему у индивида-носителя соматических мутаций сосуществуют разные клеточные популяции — и та, которая развивается из «нормальных» клеток (неповрежденных влиянием мутагена), и та, которая развивается из клеток, содержащих аллели-мутанты и являющихся причиной заболевания. Таких индивидов-носителей смешанных клеточных популяций называют «мозаиками».

Индуцированные мутации. До сих пор речь шла о спонтанных мутациях, т.е. происходящих без какой-либо известной причины. Возникновение мутаций — процесс вероятностный, и, соответственно, существует набор факторов, которые на эти вероятности влияют и изменяют их. Факторы, вызывающие мутации, называются мутагенами, а процесс изменения вероятностей появления мутации — индуцированием. Мутации, возникающие под влиянием мутагенов, называют индуцированными мутациями.

В современном технологически сложном обществе люди подвергаются воздействию самых разных мутагенов, поэтому изучение индуцированных мутаций приобретает все большее значение.

К физическим мутагенам относятся все виды ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетовое излучение, высокие и низкие температуры; к химическим — многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, некоторые биополимеры (например, чужеродные ДНК и РНК), алкалоиды и многие другие химические агенты. Некоторые мутагены увеличивают частоту мутаций в сотни раз.

К числу наиболее изученных мутагенов относятся радиация высоких энергий и некоторые химические вещества. Радиация вызывает такие изменения в геноме человека, как хромосомные аберрации и потерю нуклеотидных оснований. Частота встречаемости мутаций половых клеток, индуцированных радиацией, зависит от пола и стадии развития половых клеток. Незрелые половые клетки мутируют чаще, чем зрелые; женские половые клетки — реже, чем мужские. Кроме того, частота мутаций, индуцированных радиацией, зависит от условий и дозы облучения.

Соматические мутации, возникающие в результате радиации, представляют собой основную угрозу населению, поскольку часто появление таких мутаций служит первым шагом на пути образования раковых опухолей. Так, одно из наиболее драматических последствий Чернобыльской аварии связано с возрастанием частоты встречаемости разных типов онкологических заболеваний. Например, в Гомельской области было обнаружено резкое увеличение числа детей, больных раком щитовидной железы. По некоторым данным, частота этого заболевания сегодня по сравнению с доаварийной ситуацией увеличилась в 20 раз.

Экспансия (инсерция) повторяющихся нуклеотидных последовательностей: миотоническая дистрофия (мд).

Встречаемость миотонической дистрофии составляет 1 на 8000. Это заболевание наследуется как аутосомное доминантное заболевание и представляет собой наиболее часто встречающуюся форму мышечной дистрофии у взрослых. Клинически это заболевание крайне разнообразно; его симптомы включают: миотонию, прогрессирующую слабость, атрофию мышц, расстройства сердечно-дыхательной системы, катаракты, раннее облысение, умственную отсталость и атрофию половых органов. Обычно первые клинические проявления МД наблюдаются в 30—40 лет, однако в некоторых случаях она развивается с момента рождения, и тогда ее симптоматика намного тяжелее. Врожденная МД отличается высокой смертностью, у выживших же детей классическая симптоматика МД обнаруживается уже к 10-летнему возрасту.

Мутация, вызывающая развитие МД, была выявлена, описана и картирована. Биологический механизм этой мутации связан с нестабильной природой повторяющейся последовательности азотистых оснований (о структуре ДНК) на участке гена, расположенном на длинном плече хромосомы 19. Генетический механизм нестабильных повторяющихся последовательностей был открыт сравнительно недавно. По неизвестной до сих пор причине короткие сегменты ДНК, состоящие из 2, 3 и 4 нуклеотидов, выстраивают повторяющиеся последовательности, которые включают от двух до нескольких сотен таких сегментов. Повторяющуюся последовательность можно представить следующим образом:

АСАСТ — сегмент повторяющейся последовательности;

АСАСТАСАСТАСАСТАСАСТ АСАСТ — повторяющаяся последовательность из 5 сегментов;

(А) АСАСТ АСАСТ, (а) АСАСТ АСАСТ АСАСТ АСАСТ - 2 разных аллеля (А и а) локуса, содержащего повторяющуюся последовательность. На языке генетики это означает, аллель А содержит 2 повтора (2 сегмента нуклеотидов), а аллель а содержит 4 повтора (4 сегмента нуклеотидов).

Сегодня эти повторяющиеся последовательности найдены более чем в 50 000 локусов человеческого генома. Каждый локус содержит несколько (иногда до 20 и более) аллелей, включающих разное количество таких повторяющихся последовательностей. Эти аллели обычно наследуются по законам Менделя, однако были обнаружены и отклоняющиеся от них случаи, когда при переходе от одного поколения к другому количество повторяющихся сегментов меняется. Благодаря этому, а также высокой вариативности аллелей в каждом локусе, повторяющиеся последовательности привлекают особое внимание генетиков, занимающихся картированием и локализацией генов в геноме человека.

Было замечено, что чем больше количество повторяющихся последовательностей (т.е. чем длиннее вся повторяющаяся последовательность) у больных с МД, тем тяжелее протекает заболевание (табл. 3.1).

Как правило, здоровые люди являются носителями повторяющихся последовательностей длиной в 5—35 сегментов. Аллели больных, страдающих легкой формой МД, содержат 50—150 повторов. Аллели больных с классическим МД фенотипом (обычно это больные, у которых клинические симптомы появляются в 30—40-летнем возрасте) содержат от 100 до 1000 повторов, а аллели больных МД, симптоматика которых проявляется при рождении, могут содержать более 2000 повторов. В целом, чем длиннее повторяющаяся последовательность (чем больше повторов она содержит), тем раньше обнаруживает себя заболевание и тем тяжелее оно протекает. Это явление известно под названием «генетическая антиципация». Генетическая антиципация характерна не только для МД, но и для ряда других заболеваний (например, хореи Гентингтона и синдрома «ломкой» Х-хромосомы — второго, после синдрома Дауна, по частоте встречаемости среди умственно отсталых).

Таблица 3.1

Фенотип

Клинические

Количество повто-

 

симптомы

ряющихся сегментов

Легкая форма

катаракты

50-150

МД

  

Классическая

миотония

100-1000

форма МД

мышечная атрофия

 
 

преждевременное облысение

 
 

атрофия половых органов

 
 

кардиорасстроиства

 

Врожденная МД

гипотония

> 1000

 

умственная отсталость

 
 

дисплегия

 

Фенотипические проявления МД в зависимости от количества сегментов нуклеотидных повторяющихся последовательностей

Наследование сложных поведенческих признаков.

До сих пор мы говорили о наследовании качественных признаков (формы и цвета семян гороха, половых различий, определенных заболеваний). При классификации этих признаков никаких трудностей не возникает — мы легко различаем гладкие и шероховатые семена душистого горошка, четко разбиваем людей на группы страдающих и не страдающих цветовой слепотой и т.д. Однако существует целый ряд признаков человека, подобная классификация которых или вообще невозможна, или возможна только со специальными оговорками. Такие признаки называются количественными (или континуальными) (например, рост, вес, баллы IQ и др.). Распределить людей на альтернативные группы по таким признакам (высокие и низкие, «умные» и «глупые») можно только условно.

Большинство признаков, изучаемых психогенетикой, характеризуется тем, что в середине вариационного ряда (ряда значений) такого признака располагаются одна или две максимальные частоты, а справа и слева от них располагаются убывающие к концам ряда частоты, причем правые и левые частоты, одинаково удаленные от среднего, примерно равны. Оно относится к классу количественных и имеет нормальное (или приближающееся к нему) распределение. Его свойства описаны в любом руководстве по статистике, поэтому излагать их здесь мы не будем. Отметим только, что кривая нормального распределения имеет чрезвычайно важное значение для психологии. Дело в том, что каждый психологический признак в своем развитии зависит от очень большого количества факторов (и многих генов, и многих средовых обстоятельств), действующих в благоприятном или неблагоприятном направлении. И именно нормальное распределение отражает фенотипическое разнообразие, возникающее в результате воздействия множественных факторов на исследуемый признак.

Предваряя изложение того, что известно о наследовании количественных признаков, приведем более развернутый пример психогенетических исследований изменчивости сложных фенотипов человека.

Коэффициент интеллекта, а точнее, его оценки (баллы и т.п., полученные в результате выполнения испытуемым набора различных субтестов, а затем усредненные с тем, чтобы получить обобщенную переменную, описывающую познавательные признаки человека), распределен континуально, т.е. является примером количественного признака. При исследовании континуальных характеристик невозможно определить количество «больных» и «здоровых», т.е. нельзя применить законы Менделя, описывающие механизмы исследования дискретных признаков. Тем не менее многочисленные психогенетические исследования интеллекта показали, что они передаются по наследству. Например, родители с высокими показателями по интеллекту обычно имеют детей, чьи интеллектуальные способности выше среднего. Однако механизм передачи по наследству интеллектуальных способностей не соответствует законам Менделя.

Кроме того, на функционирование каждого гена оказывают влияние характеристики среды. Предположим, что некоторый ген А чувствителен к изменению температуры в окружающей его клеточной среде (т.е. экспрессия гена зависит от характеристик окружающей среды). Тогда можно предположить существование следующей причинной цепочки: температура клеточной среды повышается (в ответ на какие-то внешние средовые воздействия или на внутреннюю реакцию организма, например, на инфекцию); в изм… Продолжение »

Сделать бесплатный сайт с uCoz